Introduction To Two-Level Regression Analysis With Continuous Outcomes
Two-level analysis (individual i in cluster j):

y_{ij} : individual-level outcome variable
x_{ij} : individual-level covariate
w_j : cluster-level covariate

Random intercepts, random slopes:

\[
\text{Level 1 (Within)} : y_{ij} = \beta_0 + \beta_1 x_{ij} + r_{ij}, \quad (1)
\]

\[
\text{Level 2 (Between)} : \beta_0 = \gamma_{00} + \gamma_{01} w_j + u_{0j}, \quad (2a)
\]

\[
\text{Level 2 (Between)} : \beta_1 = \gamma_{10} + \gamma_{11} w_j + u_{1j}. \quad (2b)
\]

• Mplus gives the same estimates as HLM/MLwiN ML (not REML):
 • $V(r)$ (residual variance for level 1)
 • $\gamma_{00}, \gamma_{01}, \gamma_{10}, \gamma_{11}, V(u_0), V(u_1), Cov(u_0, u_1)$
• Centering of x: subtracting grand mean or group (cluster) mean
NELS Data

• The data—National Education Longitudinal Study (NELS:88)

 • Base year Grade 8—followed up in Grades 10 and 12

 • Students sampled within 1,035 schools—approximately 26 students per school, n = 14,217

 • Variables—reading, math, science, history-citizenship-geography, and background variables
NELS Math Achievement Regression

Within

- female
- stud_ses
- s1
- s2
- m92

Between

- per_adva
- private
- catholic
- mean_ses
- s1
- s2
- m92
TITLE: NELS math achievement regression

DATA: FILE IS completev2.dat;
 ! National Education Longitudinal Study (NELS)
 FORMAT IS f8.0 12f5.2 f6.3 f11.4 23f8.2
 f18.2 f8.0 4f8.2;

VARIABLE: NAMES ARE school r88 m88 s88 h88 r90 m90 s90 h90 r92
 m92 s92 h92 stud_ses f2pnlwt transfer minor coll_asp
 algebra retain aca_back female per_min hhw_time
 salary dis_fair clas_dis mean_col per_high unsafe
 num frie teaqual par_invo ac_track urban size rural
 private mean_sess catholic stu_teac per_adva tea_exce
 tea_res;

USEV = m92 female stud_ses per_adva private catholic
 mean_sess;

 !per_adva = percent teachers with an MA or higher

WITHIN = female stud_ses;
BETWEEN = per_adva private catholic mean_sess;
MISSING = blank;
CLUSTER = school;
CENTERING = GRANDMEAN (stud_sess per_adva mean_sess);
ANALYSIS: TYPE = TWOLEVEL RANDOM MISSING;

MODEL:

%WITHIN%
s1 | m92 ON female;
s2 | m92 ON stud_ses;

%BETWEEN%
m92 s1 s2 ON per_adva private catholic mean_ses;
m92 WITH s1 s2;

OUTPUT: TECH8 SAMPSTAT;
Output Excerpts NELS Math Achievement Regression

N = 10,933

Summary of Data

Number of clusters 902

Size (s) Cluster ID with Size s

<table>
<thead>
<tr>
<th>Cluster</th>
<th>ID</th>
<th>Size 1</th>
<th>Size 2</th>
<th>Size 3</th>
<th>Size 4</th>
<th>Size 5</th>
<th>Size 6</th>
<th>Size 7</th>
<th>Size 8</th>
<th>Size 9</th>
<th>Size 10</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>89863</td>
<td>75862</td>
<td>52654</td>
<td>1995</td>
<td>32661</td>
<td>89239</td>
<td>56214</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>41743</td>
<td>81263</td>
<td>45025</td>
<td>26790</td>
<td>60281</td>
<td>82860</td>
<td>56241</td>
<td>21474</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>4570</td>
<td>27159</td>
<td>11662</td>
<td>87842</td>
<td>38454</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>65407</td>
<td>61407</td>
<td>83048</td>
<td>42640</td>
<td>41412</td>
<td>67708</td>
<td>83085</td>
<td>39685</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>40402</td>
<td>93469</td>
<td>98582</td>
<td>68595</td>
<td>11517</td>
<td>17543</td>
<td>75498</td>
<td>81069</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>31646</td>
<td>68153</td>
<td>85508</td>
<td>26234</td>
<td>83390</td>
<td>60835</td>
<td>74400</td>
<td>20770</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>5095</td>
<td>10904</td>
<td>93569</td>
<td>38063</td>
<td>86733</td>
<td>66125</td>
<td>51670</td>
<td>10910</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>98461</td>
<td>44395</td>
<td>95317</td>
<td>64112</td>
<td>50880</td>
<td>77381</td>
<td>12835</td>
<td>47555</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>9208</td>
<td>93859</td>
<td>35719</td>
<td>67574</td>
<td>20048</td>
<td>34139</td>
<td>25784</td>
<td>80675</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>14464</td>
<td>74791</td>
<td>18219</td>
<td>10468</td>
<td>72193</td>
<td>97616</td>
<td>15773</td>
<td>877</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>9471</td>
<td>83234</td>
<td>68254</td>
<td>68028</td>
<td>70718</td>
<td>3496</td>
<td>6842</td>
<td>45854</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Output Excerpts NELS Math Achievement Regression (Continued)

<p>| | | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>22</td>
<td>79570</td>
<td>15426</td>
<td>97947</td>
<td>93599</td>
<td>85125</td>
<td>10926</td>
</tr>
<tr>
<td>23</td>
<td>6411</td>
<td>60328</td>
<td>70024</td>
<td>67835</td>
<td></td>
<td></td>
</tr>
<tr>
<td>24</td>
<td>36988</td>
<td>22874</td>
<td>50626</td>
<td>19091</td>
<td></td>
<td></td>
</tr>
<tr>
<td>25</td>
<td>56619</td>
<td>59710</td>
<td>34292</td>
<td>18826</td>
<td>62209</td>
<td></td>
</tr>
<tr>
<td>26</td>
<td>44586</td>
<td>67832</td>
<td>16515</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>27</td>
<td>82887</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>28</td>
<td>847</td>
<td>76909</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>30</td>
<td>36177</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>31</td>
<td>12786</td>
<td>53660</td>
<td>47120</td>
<td>94802</td>
<td></td>
<td></td>
</tr>
<tr>
<td>32</td>
<td>80553</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>34</td>
<td>53272</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>36</td>
<td>89842</td>
<td>31572</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>42</td>
<td>99516</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>43</td>
<td>75115</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Average cluster size 12.187

Estimated Intraclass Correlations for the Y Variables

Intraclass Variable Correlation

M92 0.107
Output Excerpts NELS Math Achievement Regression (Continued)

Tests of Model Fit

Loglikelihood

H0 Value -39390.404

Information Criteria

Number of Free parameters 21
Akaike (AIC) 78822.808
Bayesian (BIC) 78976.213
Sample-Size Adjusted BIC 78909.478
(n* = (n + 2) / 24)

Model Results

<table>
<thead>
<tr>
<th>Estimates</th>
<th>S.E.</th>
<th>Est./S.E.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Within Level</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Residual Variances</td>
<td></td>
<td></td>
</tr>
<tr>
<td>M92</td>
<td>70.577</td>
<td>1.149</td>
</tr>
<tr>
<td>Between Level</td>
<td></td>
<td></td>
</tr>
<tr>
<td>S1 ON</td>
<td>PER_ADVA</td>
<td>0.084</td>
</tr>
<tr>
<td></td>
<td>PRIVATE</td>
<td>-0.134</td>
</tr>
<tr>
<td></td>
<td>CATHOLIC</td>
<td>-0.736</td>
</tr>
<tr>
<td></td>
<td>MEAN_SES</td>
<td>-0.232</td>
</tr>
</tbody>
</table>
Output Excerpts NELS Math

Achievement Regression (Continued)

<table>
<thead>
<tr>
<th></th>
<th>Estimates</th>
<th>S.E.</th>
<th>Est./S.E.</th>
</tr>
</thead>
<tbody>
<tr>
<td>S2</td>
<td>ON</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PER_ADVA</td>
<td>1.348</td>
<td>0.521</td>
<td>2.587</td>
</tr>
<tr>
<td>PRIVATE</td>
<td>-1.890</td>
<td>0.706</td>
<td>-2.677</td>
</tr>
<tr>
<td>CATHOLIC</td>
<td>-1.467</td>
<td>0.562</td>
<td>-2.612</td>
</tr>
<tr>
<td>MEAN_SES</td>
<td>1.031</td>
<td>0.283</td>
<td>3.640</td>
</tr>
<tr>
<td>M92</td>
<td>ON</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PER_ADVA</td>
<td>0.195</td>
<td>0.727</td>
<td>0.268</td>
</tr>
<tr>
<td>PRIVATE</td>
<td>1.505</td>
<td>1.108</td>
<td>1.358</td>
</tr>
<tr>
<td>CATHOLIC</td>
<td>0.765</td>
<td>0.650</td>
<td>1.178</td>
</tr>
<tr>
<td>MEAN_SES</td>
<td>3.912</td>
<td>0.399</td>
<td>9.814</td>
</tr>
<tr>
<td>S1</td>
<td>WITH</td>
<td></td>
<td></td>
</tr>
<tr>
<td>M92</td>
<td>-4.456</td>
<td>1.007</td>
<td>-4.427</td>
</tr>
<tr>
<td>S2</td>
<td>WITH</td>
<td></td>
<td></td>
</tr>
<tr>
<td>M92</td>
<td>0.128</td>
<td>0.399</td>
<td>0.322</td>
</tr>
</tbody>
</table>

Intercepts

<p>| | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>M92</td>
<td>55.136</td>
<td>0.185</td>
<td>297.248</td>
</tr>
<tr>
<td>S1</td>
<td>-0.819</td>
<td>0.211</td>
<td>-3.876</td>
</tr>
<tr>
<td>S2</td>
<td>4.841</td>
<td>0.152</td>
<td>31.900</td>
</tr>
</tbody>
</table>

Residual Variances

<p>| | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>M92</td>
<td>8.679</td>
<td>1.003</td>
<td>8.649</td>
</tr>
<tr>
<td>S1</td>
<td>5.740</td>
<td>1.411</td>
<td>4.066</td>
</tr>
<tr>
<td>S2</td>
<td>0.307</td>
<td>0.527</td>
<td>0.583</td>
</tr>
</tbody>
</table>
Cross-Level Influence

Between-level (level 2) variable \(w \) influencing within-level (level 1) \(y \) variable:

Random intercept

\[
y_{ij} = \beta_{0j} + \beta_1 x_{ij} + r_{ij}
\]

\[
\beta_{0j} = \gamma_{00} + \gamma_{01} w_j + u_{0j}
\]

Mplus:

```plaintext
MODEL:
%WITHIN%;
y ON x;   ! estimates beta1
%BETWEEN%;
y ON w;   ! y is the same as beta0
            ! estimates gamma01
```
Cross-level interaction, or between-level (level 2) variable moderating a within level (level 1) relationship:

Random slope

\[y_{ij} = \beta_0 + \beta_{1j} x_{ij} + r_{ij} \]
\[\beta_{1j} = \gamma_{10} + \gamma_{11} w_j + u_{1j} \]

Mplus:

```
MODEL:
  %WITHIN%;
  betal | y ON x;
  %BETWEEN%;
  betal ON w;      ! estimates gamma11
```
Generalizations Of Two-Level Regression

The Mplus framework allows random slopes for

- Observed covariates
- Observed dependent variables (for example, mediational modeling with random slopes)
- Factors
Further Readings On
Multilevel Regression Analysis

See also
